<u>Topic 3 – Acids, bases and buffers</u> <u>Revision Notes</u>

1) Acids and Bases

- The Bronsted-Lowry theory says that acids are proton donors (H⁺ donors). Bases are proton acceptors.
- Strong acids and bases are fully dissociated (or ionised)
- Weak acids and bases are partially dissociated
- Conjugate acid-base pairs are two species differing by H⁺
- For any weak acid, HA:

$\begin{array}{rll} HA(aq) + H_2O(l) & H_3O^+(aq) + & A^-(aq) \\ Acid & base & conjugate acid & conjugate base \end{array}$

- In this reaction, A⁻ is the conjugate base of the acid HA because it is formed by loss of H⁺ from HA
- In this example, H_3O^+ is the conjugate acid of the base H_2O because it is formed by the gain of H^+ by H_2O
- For a weak base, such as NH₃

2) <u>Quantifying acid and base strength</u>

- pH is a number that shows the strength of an acid or base
- $pH = -log[H^+]$ and $[H^+] = 10^{-pH}$
- pH is always given to 2 decimal places
- [H⁺] deals with negative powers over a very wide range whereas the pH scale makes the numbers more manageable

a) pH of a strong acid

Calculate the pH of 0.100 mol dm⁻³ HCl

 $\begin{bmatrix} H^+ \end{bmatrix} = 0.100 \\ pH = -log[0.100] \\ = 1.00$

b) pH of a strong base

To calculate the pH of a strong base, we need to take advantage of the fact that water is very slightly dissociated.

 $H_2O(I)$ $H^+(aq) + OH^-(aq)$

The equilibrium constant for this reaction is:

$$K = [H^{\pm}][OH^{\pm}]$$

[H₂O]

As [H₂O] is little changed, we define a constant $K_{\rm w},$ which is known as the ionic product of water

 $K_w = [H^+] x [OH^-]$

At 298K (25°C) $K_{\rm w}$ has the value of $10^{\text{-}14}\ \text{mol}^2\ \text{dm}^{\text{-}6}$

```
Calculate the pH of 0.100 mol dm<sup>-3</sup> NaOH

\begin{bmatrix} OH^{-} \end{bmatrix} = 0.100 \\ \begin{bmatrix} H^{+} \end{bmatrix} = K_{w} / \begin{bmatrix} OH^{-} \end{bmatrix} \\ = 10^{-14} / 0.100 \\ = 10^{-13} \\ pH = -log[10^{-13}] \\ = 13.00 \end{bmatrix}
```

c) pH of a weak acid

The weak acid HA dissociates as follows.

HA
$$H^+ + A^-$$

The equilibrium constant for the weak acid is:

$$K_a = \frac{[H^{\pm}][A^{\pm}]}{[HA]}$$

 K_a is a measure of the extent to which a weak acid is ionised. The larger the value of K_a the more the weak acid is ionised

When one mole of HA ionises, one mole of H^+ and one mole of A^- are produced i.e. $[H^+] = [A^-]$, so we can write:

 $K_a = [H^+]^2/[HA]$

Re-arranging gives:

 $[H^+] = \sqrt{(K_a \times [HA])}$

Calculate the pH of 0.100 mol dm⁻³ chloroethanoic acid given that $K_a = 1.38 \times 10^{-3} \text{ mol} \text{ dm}^{-3}$

 $\begin{array}{ll} [\mathsf{H}^+] &= \sqrt{(1.38 \times 10^{-3} \times 0.100)} \\ &= \sqrt{(1.38 \times 10^{-4})} \\ &= 0.0117 \\ \mathsf{pH} &= -\log[0.0117] \\ &= 1.93 \end{array}$ Source $\ \ \underbrace{\mathsf{http://www.chemsheets.co.uk/}}$

Percentage dissociation of a weak acid is $[\rm H^+]/[\rm HA]$ i.e. hydrogen ion concentration/acid concentration

d) pH of water

For pure water, $[H^+] = [OH^-]$, so $K_w = [H^+]^2$ and $[H^+] = \sqrt{K_w}$

Example

At 318K, the value of K_w is 4.02 x 10^{-14} mol² dm⁻⁶. Calculate the pH of water at this temperature and explain why the water is still neutral.

 $\begin{array}{ll} [{\rm H}^+] &= \sqrt{{\rm K}_{\rm W}} \\ &= \sqrt{4.02 \ x \ 10^{-14}} \\ &= 2.01 \ x \ 10^{-7} \ {\rm mol} \ dm^{-3} \\ {\rm pH} &= -{\rm log}[{\rm H}^+] \\ &= 6.70 \\ \\ {\rm Still \ neutral \ because \ [{\rm H}^+] \ = \ [{\rm OH}^-] \\ \\ {\rm Source:} & {\rm AQA \ January \ 2006 \ paper } \end{array}$

e) pKa

- $pK_a = -log(K_a)$ and $K_a = 10^{-pK_a}$
- As with pH, using pK_a instead of K_a makes the numbers more manageable

Calculate the pKa of chloroethanoic acid

From the previous example, $K_a = 1.38 \times 10^{-3}$ $pK_a = -log(1.38 \times 10^{-3})$ = 2.86

3) Acid-base titrations

a) pH curves

- pH can be monitored during an acid-base titration and plotted against volume of reagent
- This produces a pH curve with a shape that depends on whether the acid and base are weak or strong

equivalence point

strong acid

pH 7

0

Weak base-strong acid

Volume of strong acid added

Source of these diagrams: CAMS Chemistry A2 Support Pack

- When selecting an indicator for a titration, the pH range in which the indicator changes colour must match the vertical part of the relevant pH curve
- Phenolphthalein has a pH range of 8.2 to 10.0 so it is unsuitable for titrations involving weak bases
- Methyl orange has a pH range of 3.2 to 4.4 so it is unsuitable for titrations involving weak acids

b) Titration calculations

- Work out the moles of acid and base at the start
- Work out the excess moles of acid or base (the rest will be neutralised)
- Work out the new [H⁺] or new [OH⁻] and then the pH

Calculate the pH of the solution formed when 20 cm^3 of 0.10 mol $dm^{\text{-}3}$ HCl is added to 30 $cm^{\text{-}3}$ of 0.04 mol $dm^{\text{-}3}$ NaOH

Moles HCI	= 0.10 x 20/1000		
	= 0.0020 mol		
Moles NaOH	= 0.04 x 30/1000		
	= 0.0012 mol		
Excess HCI	= 0.0020 - 0.0012		
	= 0.0008 mol		

Total volur New [H ⁺]	ne = 50 cm ³ = moles/volume = 0.0008/(50/1000)
рН	= 0.016 mol dm ⁻³ = $-\log(0.016)$ = 1.80
Source	http://www.chemsheets.co.uk/

4) <u>Buffer solutions</u>

- A buffer solution minimises pH changes on addition of an acid or base
- Buffer solutions are important for controlling pH in blood (so that enzymes are not denatured) and shampoos (so that eyes do not sting and skin is not damaged)

a) Acidic buffers

- An acidic buffer consists of a weak acid and the salt of a weak acid (e.g. ethanoic acid & sodium ethanoate)
- For ethanoic acid/sodium ethanoate, the following equilibrium exists:

$$CH_3COOH(aq)$$
 $CH_3COO^{-}(aq) + H^{+}(aq)$

- If a small amount of acid is added, equilibrium will shift to the left to remove the added H⁺. The following reaction occurs: CH₃COO⁻ + H⁺ → CH₃COOH
- If a small amount of base is added, the OH⁻ will react with H⁺ to form water. The equilibrium will shift to the right to replace the H⁺ that has been removed. The following reaction occurs: $CH_3COOH \rightarrow CH_3COO^- + H^+$

b) Calculating the pH of a buffer solution

• The pH of an acidic buffer can be calculated using the K_a expression for the weak acid e.g. for ethanoic acid/sodium ethanoate:

$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$

Rearranging gives:

$$[H^+] = K_a x \qquad \underline{[CH_3COOH]} \\ [CH_3COO^-]$$

Calculate the pH of a buffer solution containing equal volumes of 2.5 mol dm⁻³ HCOONa and 1.0 mol dm⁻³ HCOOH ($K_a = 1.6 \times 10^{-4} \text{ mol dm}^{-3}$)

 $[H^+] = K_a x [HCOOH]/[HCOONa]$ = 1.6 x 10⁻⁴ x 1.0/2.5 = 6.4 x 10⁻⁵ mol dm⁻³ pH = 4.19

Source: OCR June 2003 paper

• The pH of a particular buffer depends on the value of K_a and the ratio of [CH₃COOH] to [CH₃COO⁻]

d) pH of Blood

- The pH of blood is kept in the range 7.35-7.45
- This is achieved by dissolved carbon dioxide acting as a buffer solution
- The relevant equations are:

- H₂CO₃ is carbonic acid. HCO₃⁻ is the hydrogencarbonate ion
- If the blood pH is less than 7.35 (too acidic), more CO₂ is breathed out. Both equilibria shift to the left to produce more CO₂ and [H⁺] is reduced
- If the blood pH is more than 7.45 (too alkaline), less CO₂ is breathed out. Both equilibria shift to the right to remove CO₂ and [H⁺] is increased

5) Enthalpy of neutralisation

• Enthalpy of neutralisation is defined as the change in enthalpy that occurs when an acid and base undergo a neutralisation reaction to form one mole of water i.e.

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$$

• This is a calorimetry calculation e.g.

Example

50 cm³ of 1.0 mol dm⁻³ hydrochloric acid was added to 50 cm³ of 1.0 mol dm⁻³ sodium hydroxide solution. The temperature rose by 6.8° C. Calculate the enthalpy of neutralisation for this reaction. Assume that the density of the solution is 1.00 g cm⁻³, the specific heat capacity of the solution is 4.18 J g⁻¹ K⁻¹.

$$\text{HCI} + \text{NaOH} \rightarrow \text{NaCI} + \text{H}_2\text{O}$$

- m = mass of solution = total of acid and alkali = 100g
- $q = -mc\Delta T/1000$
 - $= -100 \times 4.18 \times 6.8/1000$
 - = -2.8424 kJ
- n = moles HCl = moles NaOH = $1.0 \times 50/1000 = 0.05 \text{ mol}$

 $\Delta H = q/n$ = -2.8424/0.05 = -56.8 kJ mol⁻¹

Source: <u>www.chemsheets.co.uk</u>

6. <u>Carboxylic acids</u>

- Carboxylic acids contain the functional group –COOH on the end of a chain.
- They are weak acids (H⁺ donors). The acidic H is in the –COOH group e.g.

CH₃COOH CH₃COO⁻ + H⁺ (note – reversible reaction so not \rightarrow)

- They are soluble in water because they can hydrogen bond to water molecules
- As they are acids they will react with metals, carbonates and bases:

	CH ₃ COOH + Na → Ethanoic acid	CH ₃ COONa + ½H ₂ sodium ethanoate	Fizzing seen Sodium dissolves	
dissolve	2CH ₃ COOH + CaCO ₃	→ (CH₃COO)₂Ca + H₂O + CO	2	Fizzing seen Carbonate
	CH₃COOH + NaOH →	CH ₃ COONa + H ₂ O		

Compounds containing 2 carboxylic acid groups are called dioic acids e.g.
 HOOCCOOH is ethanedioic acid and HOOCCH₂CH₂COOH is butanedioic acid